

Biological control as a Key tool for IPM in citrus

Training Course- Caribbean

Dr. Yelitza Colmenarez (CABI), Dr. Eduardo Hidalgo (CABI), Msc. Nelson Laville (MoA-Dominica)

6 October 2020

Training course content

Session 1: Biological control as a Key tool for IPM in citrus

Day 1: October 6th - CABI Team -Invited Speaker Msc. Nelson Laville (MoA- Dominica)

Moderator: Mr. Naitram Ramnanam (CABI)

1		
Time	Topic	Speaker
09:00 - 09:05 am	International Year of Plant Health	Video IYPH 2020
09:05 - 09:10 am	Welcoming words	Dr. Hariet Hinz –
		Regional Director- CABI
		Americas
09:10 - 09:50 am	Introduction to the training course &	Dr. Yelitza Colmenarez
	Review of Impact of Citrus Greening	(CABI)
09:50 - 10:30 am	Implementation of Biological control	Dr. Yelitza Colmenarez
	in the Caribbean as a key tool for	(CABI)
	invasise specie management:	
	Potential and challenges	
10:30-10:40 am	Break	
10:40 - 11:00	Micro-biological control and its use	Dr. Eduardo Hidalgo
	in the Caribbean	(CABI)
11:00-11:30 am	Status of the management of Citrus	Msc. Nelson Laville-
	Greening in the Caribbean –	Dominica Ministry of
	Dominica case study	Agriculture
11:30 - 12:00 am	Biological control programs in the	Dr. Yelitza Colmenarez
	Caribbean and its importance in	(CABI)
	sustainable production	
12:00-12:15 am	Final Remarks	All

Citrus Greening Management

- Session 1: Introduction to the importance of Biological control as part of the sustainable pest management strategies
 - Natural Enemies
 - Micro-Biological Control Entomopatogens
- Impact of the citrus greening disease in LAC
- Review of the different management strategies-Case study from the Caribbean – Dominica
- Review the Biological Control programmes in the Caribbean and discuss the challenges and the potential

Citrus Greening Disease- Global distribution

Source: CABI 2020 LAC- 1998 – Guadalupe....

Presence in the Americas & Caribbean

Citrus Greening Disease

- It is caused by the bacterium Candidatus
 Liberibacter asiaticus (CLas) and vectored by the
 Asian citrus psyllid (ACP), Diaphorina citri
 Kuwayama (Hemiptera: Liviidae)
- Once detected in a country, its impact on citrus production is significant
- Affects citrus trees in major citrus production areas around the world, including the United States, Brazil, Asia, Africa, and the Arabian Peninsula.
- Cause the reduction of production level
- Affect the quality of the fruits produce

Citrus Greening Disease-Impact

- Occurrence of the Citrus Greening disease in Florida has caused decreasing in citrus production in by 74%
- ➤ In Florida alone, HLB has caused a cumulative loss of \$2.994 billion in grower revenues over the 2006–2007 to 2013–2014 period, an average of \$374 million per year (Hodges et al., 2014).
- ➤ In Mexico, in the first year since HLB was detected, the disease reduced the yield of infected trees by up to 50%; and it is estimated that, within five years, under a high-impact scenario, the potential losses in producer zones would be about 3 million tons, equivalent to 41% of the country's total production.
- ➤ In Brazil, since it was first reported in 2004 in São Paulo, the disease has spread and approximately 3 million trees were eliminated in attempts to limit its spread in Brazil (Bassanezi et al., 2009).

Diaphorina citri Kuwayama (Hemiptera: Liviidae)

Supression of the pest population

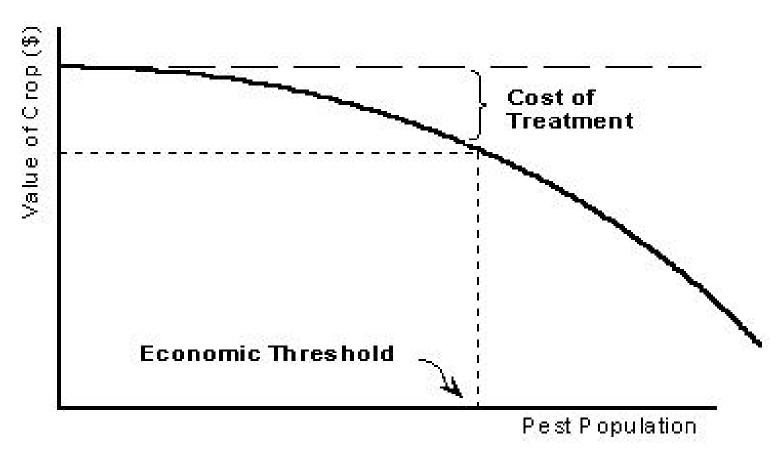


Figure 2.2 Economic Threshold, Value of Crop and Cost of Treatment (adopted by Glass, 1975)

Diaphorina citri - Biology

Biological Control Tamarixia radiata (Hym: Eulophidae)

Source: ucanr.edu

Discussions on Biological Control - Audience

Take your phone and go to www.menti.com

• Use the code: 16 13 624

We would like to acknowledge the contributors:

We gratefully acknowledge the funding provided for this research by the following organizations and agencies:

Plantwise Caribbean countries, ESALQ, FUNDECITRUS, DFID, SDC, GEFF We also gratefully acknowledge the support of CABI member countries who host and facilitate CABI's operations in the Caribbean.

CABI is an international intergovernmental organisation, and we gratefully acknowledge the core financial support from our member countries (and lead agencies) including:

Ministry of Agriculture, People's Republic of China

がとう than with a kiitos than with a kiitos than with a kiitos than with a kiitos than with a kasih with a ka

Yelitza Colmenarez y.colmenarez@cabi.org

